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Introduction.

Foz a first approximation tineair flow arouhd the airship

hull is assumed to cbe:r the laws of a perfect (i.e. free from

viscosity) incompressible fluid. The :Io-vis further assumed

to be free from vortices (or rotational motion of the fluid).

These ~ssw~ti~n~ lead.to very great sim~lifications of the

fo~rmulaeused but necessarily imply an imFerfect pict-m-eof the

actual wnditions. The value of the results depends therefore

upon the magnitude of the fmces produced by tb-edisturbances in _,

the flow caused bv viscosity with the cor.sequent~roduction of

vortice6 in the fluid. If these are sa3.11in con~a~ison mitk t>e

forces due to the assumed irrotational Terfect fluid flow the

results will give a good Ticture of tileactrLzLlconditions of an

airship in flZght.
—

* Dr. X3X M. Wnkls theory oj the aerodyna.nicforces on an air– ==
ship ”hull is Fresented in N.A.C.A. Tech=ical Notes Nos. 104, 105 ~
and 105. This -ga~er=ELSFrerared h: Dr. L. B. Tucke~man, a membez ~
of the s~ecial conrnitteeon ~he examination of the Naval Airshig -=
zR_~, as a part of the Committee’3 re~-ort and as an inter~reta-
tion ani diacussioxiof Dr. ?hmk’s papers. ii—
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GeneraJ.

The motion of a body through the fluid is aocompariiedwith

kinetic energy not only of its own motion but also of the motion

of the fluid which it pushes aside. Since the fluid is assumed

to be free from visoosity this kinetic energy of the fluid motion

is not dissi~ted but accompanies the body in its motion, being

transferred from

through it. The

nied by a steady

portion to portion of the fluid as the body moves

body, therefore, in any steady motion is accom~-

configuration of fluid flow which changes only

when the motion of the body changes. If the velocity of the body

is increased in any proportion the velocity of all portions of the

fluid is increased proportiona%e~y (provided the velocities are

small in ~m~~rison with the velocity of sound in the fluid; this

iS trUe here sinoe the fluid is ass~ed to be incompressible)and

the kinetic energy of the accom~nYing fluid motion remains pro-

portional to the kinetic energy of the bcdy itself.

If, however, the character of the motion of the body changes,

the shape of the ~wom~nying fluid motion c~nges and,the corre-

sponding additional kinetic energy changes, although the velocity

rem~in the-same.

2ure Translation.

For a motion of

kinetic energy (Ef)

~Ef=

pure translation Kirchhoff has shown that the ~J

where x, y, and z are three special axes in the body, mutually :

—
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perpendicular Vx, Vy and Vz

velocity”of the configuration

,,

the arresponding components of the ~

and p Kx, p:Ky and p,Kz are

“added inertias’lcorresponding to these three directions. On

Kx, Ky and KZ depend only the configuration of the body. The

total kinetic ener~ E of the motion of the body is

2E= 2Ef + 2Eb = (pKx+m)V~ + (P Ky+fl’J~+ (P Kz+m)V~ (2)

Since no energy is dissipated, any change in the total kinetic

energy of thg?mc)tlonof the body must be due to work done on the -

body (or by the body} 1

- 5W= 6E=( pKx+m)VX 6VX+( P K@-m)vy ~vy+( P Kz+m)Vz 6VZ (3)

If this change be due to a rotation of the body without change Of

total velocity

V: + V; + V; = V2 = constant

and
.—%Vx ~v~ + Vy 6VY + Vz w= = o

then -6W=6E= (PKX+ A)VX ~Vx+(PKy+ A)VY ~Vy+( ~KZ+ ‘)VZ 6VZ(4)

I

where the Lagrangean multiplier h may be given any value we please.

In oTder that there be no moment acting on the body tending to pro-

duce this change it is necess;zy that 5E = T 6 @ = O where

T = the moment of force acting on the body and 58 the angle of .

Totation. This equation can

~x # ~T’# Kz # Kx) ‘in three

obviously be satisfied (provided
.
3—

and only three ways. g

.
:

. . .



A =. P%>vy=vz=o

h =_ PKY, VZ=VX=O

A =. PKZ, VX=VY=O

(5)

These three mutually perpendicular directions in the body are there-
!

fore.directions of steady translation without the action of exter-

nal moments. -. .

Lateral transfer of momentum. ..

consider a configuration of fluid flow .41 (Fig. 1) having .

a resultant momentum M in the y direction and no resultant mo–

ment of momentum about the z-axis. .Let this fluid motion be de-

stroyed and replaced by an identical configuration in .$2 dis-

placed ~ distance d having a comp.one~t d sin 9 (where G is the
.

,
angle between the displacement and the direction of the resUltaIit

momentum) in the direction of the x-axis. To effect this change

a negative resultant impulse -M must be applied to the fluid in

Al and a positive resultant impulse +M to the f-luidin Aa. -.

That is,-a resultant.impulsemoment Md sin ~ must act on the -.

fluid. If, instead of a sU~den”transfer of moment~ the transfer

takes place continuously during the time t with a unifor~.~’~~-~~–

ity V such that d = Vt the h,pulitemoment

to a moment.

acting during the time t.
w

The distinction here between the momentum

of fluid flow and the momentum of a solid body

Md sin e :S due

(6)

i
of the configuration ~

should be noticed. ~
—
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In a solid body the resultant momentum necessarily

rection of its motion, The”direction of resultant

lies in the di-

momentum of a ,

configuration of fluid flow does not necessarily coincide with the

direction of the motion of the configuration.

IfT= O then @ = O and the resultant momentum coincides

in direction with the velocity.

In the three mut-llallyperpendicular directions considered

above, since there is no resultant moment of force, the resultant

momentum of the fluid must coincide in direction with the velocity.

In these three directions therefore, the momentum of the fluid is

given by

1~-x = PKXVX, ?!Y=PKYVY, MZ =

and the resultant momentum in any other uniform

P Kz Vz (7)

translation is the

resultant of these three moments. In general, the resultant mo-

mentum M does not coincide in direction with the velocity of the

body and thus needs a resultant moment T = MV sin 9 to be applied _

to the body

This moment

(as in 4) or

component of

(

in order to maintain a uniforq motion of

can be calculated either by
I

translation.

(8)
—

from T = MV sin 0 where M sin e is the transverse

the momentum, (as in 6).

The calculation of the coefficients Kx, Ky ‘and Kz for any ‘A

given body solves t~erefore for that body’the problem of the total ~“

moments necessary to maintain it in uniform translation at any .:

angle of pitch and yaw. ‘
9

-
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If the motion of the body is confined to the xy plane and

‘Y = ‘2 and Kx = K1, tken
!-

2 Ef = PKIV;+ oKZ V; = P (KI CO@” a + K2 si~2 ~)V2

~hcre a is the angle of attack, Then

T ~
= ~a

=1/2 pV2sin2a (K2-KI] (9)

or, other~ise, from equation (7’)

and the lateral comFonent of the momentum

U siria = My cos a - Mx sines

=1/2pVsin2a(K2- Kl)

and consequently as before

T =VM sin a= 1/2 PV= sin 2 a (K2 - 1{1) (9 )
.

Force Distribution.

The determination of the force distribution which Froduces

these moments requires a more detailed investi~ation.

General Metho&

The general method may be sketched as follo-xs:

Under the assumptions here made the fluid flow Fossesses a ve-

locity potential Q such that the component velocities of the fluid

(not of the confi~~tion) at any Eoint are given by:



having determined this velocity potential the pressure at eack

point of the surface is evaluated from the extended Bercouill.i

t~~crem

Here Q is the potential of the extefnal forces acting on

id. Since we are neglecting the change of

this may be treated as a constant. As Dr.

term ~ may, if desired, be transformed

(10)

the flu-

pressure with height

?lunkhas shown, the

into

(11)

%~here V is the velocity of the configuration at the point and

@ the angle bet’weenthe velocity of the configuration and the

velocity of the fluid,

This pressure is then integrated over the surface of.success-

ive zones of the ship, giving the resultant distribution of longi-

tudinal and lateral forces along the ship.

This process although perfectly general in theory is gener-

ally impractical, since the velocity potential q and consequently

the velocity distribution has only been determined for a very few

simple geometrical shapes, and even in these cases the computa-

tions are laborious.

Dr. lJunk~s, ho~e~er, used the knowledge of the detailed ;’=,

pressure distribution based upon known velocity potentials in dis- ‘:

oussing the effect of changing shape upon flow around t~o ciimen-
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~~.c=l shapes (No. 304, pp. 7, 8 and 9!.

Approximate Qolution.
. .

To avoid these dtfficul%iss, Dr. Wnk attazks tle pr~blem in ‘

tne fallowing apploxinate way: The flow about any portion of the .

elongated ship is considered *O approximate at ar~ygiven instant.

the corresponding flow about an infinite cylinder having the same .

cross–section,(Fig. 2). In this case the transverse added inertia ~,

i.Sreadily calculated from the well kno~ case of two dimenSiO~l

flow about an elliptic cylinder.

The velocity potential in this case is determined from the

complex function

z =(x+ iy)=f ’(w)=f(Q+i W)
, .

where q is the velocity potential and y the stream f~ction.

Here
—

Z= AW’+Z”.
w

Proper ckoice of the constants A and B fits tkis to any elliptic

cylinder between the limits of the infinitely thin flat plate and

the circle. (See LambTs Hydrodynamics, 4th edition, E.79, Lorenz,

Technische Hydro-Mechanik, p.2W.) ,

If a and b are the major and minor semi–axes of the el–

lipse, the added inertia per unit length p K&’ = p n b2 and

~% =pnaz. Inthe special case of a circular cylinder to

which he confines hims,elfin this presentation
.

~here S is the cross-section of the ship at this point,
.
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is of course zero. The contribution of any element of length dx

t~ the total moment of the ship is therefore approximately from

eql=tion (9)
+s

~~ &=dT=l/2 pV2 sin 2a (K: - K~)ti=l/2pV2 sin 2uS dx (13)

since ~ . shear and d2T
dx — = lateral load per unit length, the =&.

total moment T = l/2pV2sin 2a~ S &K=l/2 pV2Q sin 2 a (14)

w-here Q is the volume of the ship, and the lateral load -

F = f f dx is distributed according to the law

fdx=$$x= l/2pV2sin2a~dx (15)

This same ~ethod of reasoning he applies later to the problem of

the rotating ship.

The same result is arrived

~lained verbally, as follo%:

The transverse momentum of

is, from equations (7) and (12)

at more directly as Dr. Xunk ex–

an element of length of the ship

(Fig. 2)

&dx=dM= pVsinaSdx (16)

,.

If the moss-section S were increasing at the rate ~ the tr~n~-

verse momentum would be increasing at the rate

MQ. = PVsina ‘a~dx=fdx
dt

requiring a transverse load distribution f dx to impart this in–
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crease of momentum. The equivalent of this incfease of czoss-

section is imparted to the transverse air flow by the longitudinal .

component of the ship’s motion (Fig. 3). As shown in the diagram
.

the air which was flowing about the section S is after a time dt

flowing about the section ds=-. ~cosa ~.S + ~ dt There ~

The corresponding increase of transverse momentum must be imParted ~

to it by a laterally distributed force on the ship.

fdx= pVsin UVcos Cf~dx

(15)

as before.

The total moment on the ship calculated by this approximation

was

T.=1/2pV2Qsin2U (14)

obviously here the volume replaces the coefficient “(&- KI) or

equation (9).

These coefficients Ka and El have been calculated for a num-

ber of simple shapes. In particular, lamb has calculated their

value for ovary ellipsoids of different ratios of length to diameter.

In this case, for all finite lengths K2 - K1 is less than

the volume. Dr. Munk therefore proposes to apply a correction fac-

tor- (~ - ka) (where k2 ~=~andkl= a) to the preceding for-

mula, thus giving .

Total moment - T = 1/2 PV2 (ka -kl]sin 2 a Q (17) :

Shear
dT
~ =1/2 PV2 (ka –kl)sin2 a S (28)
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La.teralforce f dx = 1/2 pV2 (k2 - k3]sin 2a &dX (19)

where ~ and~ are LambTs coefficients for the ellipsoid cor’re-

syonding to the ship as calculated by the formula

~ (ellipsoid)= ‘f~~? (ship) (20) ‘!

ROTATION

General -.

If a bodY be in uniform tr~ns~tion parallel to one of itS “

principal directions (V), (Fig. 4), the added momentum of th~

fluid will have the same directioz About any axis A’ perpendic-

ular to this direction there will be in general a resultant mOmeTlt
.
of momentum of the added momentum. There will, however, be a line

—-,

.

BB 1 parallel to the direction of the velocity such that the res~t-

ant moment of moqentum about any perpendicular axis (A) through it

is zero, A similar line exists for translation in each of the other

twc “principal directions”. These three lines do not in general

intersect in a point. In bodies possessing certain types of aero-

dynamic symmetry, however, they intersect in a point C. the aero-

dynamic center of the body. If the body possesses geometrical sym-

metry this aerodynamic center lies on the planes or axes of symme-

try. This aerodynamic center exists in airship hulls and will’be

used as the center of reference for points in the body. The axis

of x will be laid through it in the “longitudinal” principal axis

of the body, this axis being an axis of central symmetry. :

The ship (Fig. 5) is supposed to be turning with a uniform ~,

vangular velocity ~ about a fixed azis () where V is the linear

.
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velocity of the aerodynamic center. The accompanying velocity con-

figuration has a steady shape and steady speed and consequently a

constant added energy but turfiswith the ship about the fixed cen-

ter 0. The constancy of the energy reqUires that the resultant

of all the forces acting on the ship pass through the center (3

since otherwise the forces would have a moment about this axis and

consequently add (or subtract) energy, These forces may be re-

solved into a radial (centripetal)air force F= necessary to bal–

ante the centrifugal force of the ship and of the accompanying

fluid and a tangential (inertial drag) force FT either positive “
.

or negative, ‘rhichis added to the frictional drag (neglected here).
.

The radial forces pass through O, hut the tangential force Fy

considered as applied at the aerodynamic center requires an acCom-

&nying moment FTR to displace the line of action to 0.

For the purpose of determining the6e force8 the motion may be

resolved into two ~arts, a parallel translation along the path and

~a rotation with angular velocity ~ about the aerodynamic center.

If the center of mass of the ship coincides with its aerodynamic

center this latter motion will involve no resultant forces nor re-

sultant moments and consequently the resultant forces are calcu.l&

ble from the parallel translation alone.

The total tangential momentum M. (Fig. 6) of the ship in

parallel motion is composed of two parts, ‘!T due to the mass m
1

of the body .
MT =P?lm, (.21)1 ..=

—

and MT2 due to the added tangential inertia



.thiietunetotal radial momentum Mr is the added radial “momer.tuii.

alone and is

~~r =1/2 pV(K2-Kl)sin2a (23)

then (see Fig. 6)

Mx = M= sin @-+ MT cos 6 MT = MTI + lLT2

‘Y = Mr COS 0 - M. sin 6
, ) .

From these the radial’and tangential forces nea.essaryto maintain

the motion are

Fx=~ ~ (Mr”cosP- MY sine)= (Mr cos e : J& sin ~)~ -=–

= #==-4Mrsin 6 + M.
d.&

‘Y Cos e )~t– - ~ (Mr sin~+ M7 COS El)

If e=o FX=FT and I?y= Fr

I

Then FT=R ~= 1/2 PV2~(K2-Kl) sin2UEM (24)

This represents a drag”when a is positive,

And Fr =-~ W=- pV2 ~m - ,pV2~(Ka sinla+Klcos2a} [25)

. . which is a centrifugal force.

This computation is of course exactly the same as the u9Ual

calculation of centrifugal force in rigid dynamics, the only differ-

ence being the existence of a,transverse momentum, which gives rise G
._.-

to the ~centrifugal” drag force. This is a generalized centrifu@ -
. .-

. .. ,%
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force in the Lagrangean sense.

The drag FT is wholly due to air forces acting on the ship

but of the centz~.fUga~fOrce Fr that part due to the ~6S of the

ship PV21—m
R involves no air forces, the ad&ed centrifugal force -

@@-”~ (Ka sin= a + KI COS2 a ) however+,is transmitted to the

ship by air forces

The drag F.

accompnisd by the

is the same as the

aoting on it.

considered applied at the aerodynamic center is

moment F7R= 1/2 PVZ (K2 - Kl) sin 2 a which

umtable moment in rectilinear motion (eq-mtion

(9) ). The maintenance of the motion demands therefore (Fig. 7)

a resultant force F and a moment T in addition to the aerody-

namic forces here discussed. The fins alone su~ply the transverse

component FI and the moment T = F’a.

Distribution of-these forces.

Dr. Munk calculates the distribution of these air forces by

the first method used in the case of rectilinear motion. Here,

however, it is necessary to bear in mind that because of the curva-

ture of the path the effective angle of attack of successive ele-

ments of the ship’s length are different.

These angles of attack may be calculated as follo-rs(See Fig. 8).

.

~’ =a - e =a _ ~r~ sin ( &~ cos a’)
—

Then sin 2Tt’ % sin 2a cos 2 (arc sin A~ Cos a’)
—
~
G—

c05 2a sin 2 (arc sin 3~ cOs’a’)
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If u and # are both small this rsduces to

sin2a’=sin 2a-2 ~ (26)

Then each element of length dx contributes an element of moment

cm~dx=l/2pV2(tin2a .2~)Sdx

- The first term is due to the.translation alone and the second term

to the added rotation combined with the translation Dr. Munk cal-

culates these terms separately but the reasoning is equivalent to

that here given. The total amount is

T =1/2pVasin2a~Sdx - ~v2+jsxti (28)

The first term is the unstable moment of

“,md the second term is zero since J S x

the translational motion,

dx is the static moment

of the volume about the aerodynamic center, which on the assump-

tions here made coincides with the center of volume. As before,

this aalctilationgives a resultant moment somewhat larger than

acts on a ship of finite length so.that he introduces again the

correction factor (k, - kl) in the first term.

, This factor gives the correct resultant moment. Since the

remaining terms have no resultant, nor resultant moment; there is

no obvious correction factor, Dr. Munk uses here %* as a cor-

rection factor instead of (k. - k,).

The force dis+~itv.l++onis th~~ .---. ..... .“— -..,

*Note: The difference is not great and it is all a matter Of judg–

ment but Dr. %nk’s reason for using a different correction factor
here is not clear to me. The forces are all calculated on the same
basis of approximation. L.B.T.

=

.—.—



~dx=f dx=l/2 p ~ (kz-kl)sj.n2a %dx - (a)@*(g + S)dx

.
and the total transverse-foxce ‘

F =Jidx=o

This a~proximate distribution of transverse air forces there..

fore accounts foT the resultant unstable moment of the ship,

It of course does not account fo~ the drag. The undermined drag

forces are, however, sr.all,and keing longitudinal, give rise to

no appreciable bending moments ,inthe hull.

In addition, however, the a~proxtmaticn has yet to a-crcouht’for

the addendcentrifugal for~e (equation (25) ).

This force is Of co~~se s~ll since a and K, are both small.

For an L
5 ratio of 6 and an angle of attack of S degrees it is

less than 6 ~er cent of the shipls OWE centrifu~l force.

Of the two parts of this added centrifugal f~rce~ the first

2 K2
pV ~sinaa = ~,V2~ Q sin2a

I

.

being due to the transverse added inertia can reasonably be assum-

ed to be distributed accozding to the cross sectional area or

fti=’pti~ S sin2a (30)

The second term
2 1<1 2 kl

pVFCOS%=p V=Q =.
(31) ““

(.a being small COS2 ti= 1 approx.)

— ,.-



27 -

requires a more detailed treatment, since its longitudinal distri-

bution migkt give rise to considerable bending moments. As this

term arises frcm the longitudinal added inertia alone, he-consid-

ers a ease of longitudinal-flowonly, the flow arising from a sin-

gle source and equal sink (Fig. 9), He chooses this flow (which

gives a blunter airship model) instead of the corresponding ellip-

80id because of the simpler mathematical treatment. The oorreG-

sponding velocity is

‘x

Here L = 2C +

or nearly L = t21c,

As may be seen from

(see Fig. 9) with the velccity distribution

-* m x- c= ( X+c
3Cx 16 ‘- )

% <’-

D
approximately -

J z-

the indicated line of flow the-longitudinal

component of the velocity and consequently the added inertia is

positive near the two ends but negative along nearly the whole of

the side of the ship. At mid-section this negative velocity is
VD2 VD2approximately ~ “diminishing to about
~L 16L2

opposite the two

sources and then rapidly changing sign aroud the nose. To simpli-

fy his computation Dr. Murikassumes that it maintains its mid-

VD2section value ~ along the whole length and that the transverse
~L2

velocity is negligible. This obviously results in an over-estima-

tion of the bending moments produced, This flow, however, repre-

Aents a pure translation. The ship actually is rotating about a :—

.
—
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center O (Fig. 10), so that if V is the ship’s velocity ah uhe

aerodynamic center, the surface ve~O~ity of the ship changes aCrOss

the ship having a velooity V1 = (v+y~) at any point a horizon-

velocity remains the same in the circular flight as in straight

flight,** whioh gives

* In a personal conversation, Dr. Munk states that this method of
reasoning iS different from the one he Used, but aS it arrives at
the same result, is presumably equivalent *O it.

**Note: If the alternative assumption be wade that the air velocitv
at any point of the surface in circular flight bears the same rati~
to the surface velocity of the ship as it does in straight flight
then

and

and the pressure

F’= -+$F-(1 - g) (1 + ;)2

gradient

imately.

This pressure gradient is twice as great as on Da: Nmk’s;assmption.
It seems probable that the actual &ir velocity will lie between
these two extremes, so that Dr. Munk’s assumption represents an un-
der-estimation of the pressure gradient and consequently an under-
estimation of the bending moments. As noted above, the assumption
that the air velocity maintained its mid-section velocity
~~2

~ along the whole length, caused an over-estimation of the bending
-,

moment8. These two factors will of course partially’compensate each -
otker, so that the Munk’s assumption is probably more nearly correct,
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2

air velocity Vr = v = - ~ .-

configuration velocity Vt = ~ (1 +:).

Since the transverse aii v~~ooity ig considered negligible

Q = O and cos $ ‘.1, then the pressure (equation

combined with (11) )

P2
P =_—

2
VI - pVf VI cos 6 + constant

,

and the pressure gradjentz

(10)

f

This pressure ~adient acts in the same my as a gravitation@

pressure gradient due to a fluid of density P~D2 in a field of
2RL2

Pls@Q
‘horizontal intensity 1. The total lateral force is then ~ ~ La .

(32) and is distributed along the ship proportional to the cross-

sectional area. The a’ddedcentrifugal force # Qkl consists -

1 P,’w
therefore of two centrifu=~l forces ~ ~ Q (kl +~) (33) con-

centrated practically at the ends of the ship combined with a cen-

P V2
tripetal force ~ Q ~ (32) distributed along the ship propor-

tional to the cross-sectional area. The factor ‘P v
— Q iS of course ~
R“

the centrifugal force of the ship itself, when in a state of static

equilibrium. For~ =6, kl =.045 and ~=
D

● 014.
2Lt2.

,..



Transverse foroe on the fins.

A small paz~of the centrifugal force can be balanced by the

lateral viscous dTag of the ship but the larger &OrtiOnmUst be

balanoed by the lateral force on the fins. In addition, this later-

al force must neutralize the unstable moment of the ship (Fig? 7)s

In his computation Dr. ~~~ a~~mes this latera} force equal to the

centrifugal force of the ship alone. This either negletis the add-

ed centrifn~l force or considers it neutralized by the lateral
I

viscous drag. Equating moments (see Fig. 7)

attaok

T=l/ap V2
P TT2

‘%-a Q

The forqes produoing thi~

law
A ..a

(36)

2. The latqral forces due to rotation aombi~ed with tangentza~

velooity. Theqe foroqs h~ve no resultant and n~ resultant moment, ~——

They are distr$~uted ~cco~ding $q the law



pT3
3. The centrifugal forces on ~?aeship itself ~Q (25)

~rovided the ship is in static equilibrium. If in addition tile

mass of the ship is distributed longitudinalh~ proportional -

to the cross seotion these are distributed aocording to the law

fdx=+ s (3X. (37)

These nearly neutralize the second term df (2)*.

4. The added centrifugal force due tO tileadded longitudinal

inertia

This is distributed approximately as a concentrated load

(31)

(33)“

5. The added centrifugal force due to the added transverse

inertia

p V2

R ka Q sin2a (25)

This is distributed according to the law

+s ~.
—.

*?Jote: For any,other mass distribution it would be of course eaay
tO CalCUlate the corresp~~~i~g foroe distribution, Since normally
the static bending moments of the hull ar~everywhere hogging mo- .
ments, the actual force distribution is somewhat greater at the

—

ends and less in the middle. L.B.T.



6. The lateral force on the fins practi~lly concentrated at

the center of pressure of the fins

PV2Q
-R

The sum total of all forces is then:

Three concentrated loads

&:(kI ++)~) at front end outward

(25)

(33)

p V2
b) at center of pressure ~ Q (25)

of fins inward

P V2 ~(kj ++? (33)
c) at rear end outward —

R2

And a force distributed along the ship, with the resultant outward

intensity

f W [(a _
‘R ~x)~+ (l-k,-- ‘2D + ka sinz a) S1

(39)

ltote:
The method of

crepancies between

to two things:

reasoning used in these

the computed forces and

papers introduces dis- ‘-

the actual forces due

1) The viscosity of the air is assmmed to be zero with the

consequent elimination of all viscous drag.

These discrepancies in the present state of the theory can -

probably only be estima%ed by comparison with experiment.
-!

ZJ) The transverse flow about any

sumed to be the same as that about the

infinite cylinder. This assumption is

element of the ship is as–

corresponding portion of an ~

lds
most accurate when ~ ~ .
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is small. It will represent most closely the conditions amitihips

(i %=O?”
The largest discrepancies will occux near the klunt

t

(
&@*)

nose of the ship ~ ~=””, and the next largest near the tail,

&ds
‘here D = is finite but large.

Since even small discrepancies in fozces near the ends ~Y

result in relatively large discrepancies in the bending moments

on the ship, it would seem to be very desirable to have some Com-

parison of the”results of this approximate method with an acaate

computation of the forces on a shape approximating that of the

airship.

The theory of the potential flow about an ovary ellipsoid is

so complete that it is possible (although tedioue) to compute ‘he

actual force distribution along such a shape both for straight

flight and steady turning.

It would seem that the comparison of the results of such a

computation with the results of the approximate analysis given

above would be of value in indicating the magnitude of the dis-

crepancies involved.

L. B. Tuckerman.

d
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Supplementary Note No. 1. ~~odifi~ticn of Dr. MunkIs form.ul.%e.

?Ir.C. P. 13ur@s has called my attention to the practical

disadvantage of an approximate load distribution which is not in

equilibrium. By neglecting the added centrifugal forces in the

calculation of the lateral force on the fins Dr. Munk leaves an
~ ~,~,

unbalanced outward foroe of ‘~- Q (kl -i-k2 sin2 a). This makes.

no appreciable difference in t:;ezesulting moments on the ship

but is inconvenient in practioal computation, since it prevents

the check obtained by computing both ways along the hull.

This ma-ybe avoided by using the total centrifugal force in

calculating the fin load, i.e.

~Qa(l + k,+ ~sina a)-= PV2Q 1/2 (q- kl)sin 2 a

or

(k2- kl)sin 2a =% (1 + kl+ kzsin’ a)

.
Since a is small the second approximation Of its value

mill be sufficiently close for a numerical check. Then the total
.

forces on the ship become:

a) at bow outward ~Q l/2(kl +3?

‘b) at center of pressure ~~(1 + kl+ ~sin’ ~)
of fins inward

D2 )PRV2 Q. l/2(k1+~/
c) at stern outward

and a force distributed along the ship with the resultant out-

ward intensity:

—
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Su&ylementary Note Ho. 2. 12iscrmancv between Dr. lh.mk’sTheory
and N.P.L. Estimates.

In computations for the ZR-1, Mr. Burgess has noted some iiis-

crepancy between Dr. Munkls theory and”N.P.L. Estimates based on

model tests. He pointed out that it is at ‘least partially s:<plain–
e

ed by the neglect ,inDr. l&.mklstheory of the lateral resultant

force on the hull azising from viscosity. The N.F’.L.results show.

h=

f =

lateral force on

For~e on hull
Total force

Force on fins
Total force

3400
‘5RF” 354

. ~= .546 .

9600

the hull is thus over”1/3 the total force

would make a considerable change in the results.

It seems that the following method might give a somel~hatbet-

approximation, As-e forces as iri~~q.t~.$.in the diagram.
.,

4— a——————+
,.

Resultant Resultsnt
force on force on

+
fins, V2p~ Qf

hull=p+%lh

equating moments:

—

-
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then

or
(k2 _ kl)sin 2 al=

‘rhere Dr. Munk found

(p- - kl)sin 2ac=

sin 2a1
=f+~sin 2U0 .

sin 2 al——— _
sin 2 G f

or P =
h

i3urgessgives al = 70 121 ; a. =

~_
.646

Subs*i.tUting -:....~.= “3507
values .354

.
The lateral forces on the hull

23’
R-

h

80 451

= 0.51

have then apparently a result-

ant applied about half way between the center of buoyancy and the

center of pressure of the fin.

It would seem then that a recomputation by Dr. MWLCfS method

based on an angle of yaw of 7° 121 with the addition of some rea-

sonable distribution of lateral forces on the hull with a resultant

at 0.51a mignt give a still closer approximation to the actual

forces in a steady turn.
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Suppl.ementaryNote No. 3. .Approximate Yormulae for Iamb[s Coef-

In compaeing airships of diffezent fineness ratio the vari-

ation of Lambfs coefficients kl, kz and kl – ka T&y not always

be negligible, although this variation need not be accurately es- .

timzted; For such cases”it may be ~orth while noting t~e linear

approximations given on the accompanying figures. These ccmer the

whole range with a maximum error of @ of the volume or t-herange

4<; c m with a maxim-m error of W$.

It is of course obvious that in the range 4C # c ~ parabolic

approximations would give still closer values. For instance, in

this range the approximation ka - kl = 1 - 1.53 (;)’.4 has k ;;.

maximum error of 1sss than O.@. in view of the roughness of the

other approximations involved the-a-oe~~dy gained”is F20b&bly no~

worth the extra labor.

L.13.T.

,
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